After the placement of breast implants, you will still be able to breastfeed. During the surgery, there is not disruption to the normal architecture of your breast. There are not any glands or ducts that are cut during the procedure, as everything is moved to the side so that the surgeon can get underneath the breast tissue and create the space for the implant. This is done with both implants placed under and above the muscle. There so be no issues with breastfeeding after getting breast implants.

Dr. Larry Fan is a Harvard educated, Board Certified Plastic Surgeon in San Francisco, CA. He is a Master Artist who is known for creating beautiful, stunning, and natural results. Dr. Fan has been named One of America's Top Plastic Surgeons for the past 10 years running and has received several national awards for his work in Plastic Surgery. He has successfully performed more than 10,000 cosmetic procedures of the face, breasts, and body over a 20 year period. Dr Fan has been an invited speaker at the American Society of Plastic Surgeons and the American College of Surgeons, and has been featured in national media outlets such as CNN, NBC, and ABC.
In the mid-twentieth century, Morton I. Berson, in 1945, and Jacques Maliniac, in 1950, each performed flap-based breast augmentations by rotating the patient's chest wall tissue into the breast to increase its volume. Furthermore, throughout the 1950s and the 1960s, plastic surgeons used synthetic fillers—including silicone injections received by some 50,000 women, from which developed silicone granulomas and breast hardening that required treatment by mastectomy.[112] In 1961, the American plastic surgeons Thomas Cronin and Frank Gerow, and the Dow Corning Corporation, developed the first silicone breast prosthesis, filled with silicone gel; in due course, the first augmentation mammoplasty was performed in 1962 using the Cronin–Gerow Implant, prosthesis model 1963. In 1964, the French company Laboratoires Arion developed and manufactured the saline breast implant, filled with saline solution, and then introduced for use as a medical device in 1964.[88]
For example, if you have very large breasts, sometimes the only reduction that can be made is to detach the nipples and areolas completely from the underlying tissues. If this is done, you will lose sensation in your nipples. Thus, you must think carefully about what will happen during the surgery – and whether or not you can live with the results.
A: A breast reduction with lift procedure is tailored to your exact needs. You may be a candidate if your breasts are fully developed, you are experiencing physical or emotional discomfort caused by overly large breasts, are in good health, and have realistic expectations for the results of your surgery. A consultation with your doctor will help you determine the exact procedure you need.
The breast implant has no clinical bearing upon lumpectomy breast-conservation surgery for women who developed breast cancer after the implantation procedure, nor does the breast implant interfere with external beam radiation treatments (XRT); moreover, the post-treatment incidence of breast-tissue fibrosis is common, and thus a consequent increased rate of capsular contracture.[108] The study Breast Cancer Detection and Survival among Women with Cosmetic Breast Implants: Systematic Review and Meta-analysis of Observational Studies, reported an average later stage in the diagnoses of women who developed breast cancer after undergoing breast augmentation, when compared to breast cancer patients who had not undergone breast augmentation, although this did not ultimately affect the patients prognosis. The use of implants for breast reconstruction after breast cancer mastectomy appears to have no negative effect upon the incidence of cancer-related death.[105][109]
Functional breast-feeding difficulties arise if the surgeon cut the milk ducts or the major nerves innervating the breast, or if the milk glands were otherwise damaged. Milk duct and nerve damage are more common if the incisions cut tissue near the nipple. The milk glands are most likely to be affected by subglandular implants (under the gland), and by large-sized breast implants, which pinch the lactiferous ducts and impede milk flow. Small-sized breast implants, and submuscular implantation, cause fewer breast-function problems; however, it is impossible to predict whether a woman who undergoes breast augmentation will be able to successfully breast feed since some women are able to breast-feed after periareolar incisions and subglandular placement and some are not able to after augmentation using submuscular and other types of surgical incisions.[101]
In 2006, for the Inamed Corporation and for the Mentor Corporation, the U.S. Food and Drug Administration lifted its restrictions against using silicone-gel breast implants for breast reconstruction and for augmentation mammoplasty. Yet, the approval was conditional upon accepting FDA monitoring, the completion of 10-year-mark studies of the women who already had the breast implants, and the completion of a second, 10-year-mark study of the safety of the breast implants in 40,000 other women.[119] The FDA warned the public that breast implants do carry medical risks, and recommended that women who undergo breast augmentation should periodically undergo MRI examinations to screen for signs of either shell rupture or of filler leakage, or both conditions; and ordered that breast surgery patients be provided with detailed, informational brochures explaining the medical risks of using silicone-gel breast implants.[113]

Periareolar: a border-line incision along the periphery of the areola, which provides an optimal approach when adjustments to the IMF position are required, or when a mastopexy (breast lift) is included to the primary mammoplasty procedure. In periareolar emplacement, the incision is around the medial-half (inferior half) of the areola's circumference. Silicone gel implants can be difficult to emplace via periareolar incision, because of the short, five-centimetre length (~ 5.0 cm) of the required access-incision. Aesthetically, because the scars are at the areola's border (periphery), they usually are less visible than the IMF-incision scars of women with light-pigment areolae; when compared to cutaneous-incision scars, the modified epithelia of the areolae are less prone to (raised) hypertrophic scars.

the first technological developments were a thinner-gauge device-shell, and a filler gel of low-cohesion silicone, which improved the functionality and the verisimilitude (size, appearance, and texture) of the silicone-gel breast implant. Yet, in clinical practice, second-generation breast implants proved fragile, and suffered greater incidences of shell rupture, and of filler leakage ("silicone-gel bleed") through the intact device shell. The consequent, increased incidence-rates of medical complications (e.g. capsular contracture) precipitated faulty-product, class action-lawsuits, by the U.S. government, against the Dow Corning Corporation, and other manufacturers of breast prostheses.
Prepectoral or subcutaneous: in a breast reconstruction following a skin-sparing or skin- and nipple-sparing mastectomy, the implant is placed above the pectoralis major muscle without dissecting it so that the implant fills directly the volume of the mammary gland that has been removed. To avoid the issue of capsular contracture, the implant is often covered frontally or completely with a mesh in biomaterial, either biological or synthetic.
From the first half of the twentieth century, physicians used other substances as breast implant fillers—ivory, glass balls, ground rubber, ox cartilage, Terylene wool, gutta-percha, Dicora, polyethylene chips, Ivalon (polyvinyl alcohol—formaldehyde polymer sponge), a polyethylene sac with Ivalon, polyether foam sponge (Etheron), polyethylene tape (Polystan) strips wound into a ball, polyester (polyurethane foam sponge) Silastic rubber, and teflon-silicone prostheses.[111]
Subglandular: the breast implant is emplaced to the retromammary space, between the breast tissue (the mammary gland) and the pectoralis major muscle (major muscle of the chest), which most approximates the plane of normal breast tissue, and affords the most aesthetic results. Yet, in women with thin pectoral soft-tissue, the subglandular position is likelier to show the ripples and wrinkles of the underlying implant. Moreover, the capsular contracture incidence rate is slightly greater with subglandular implantation.
Since experienced surgeons are aware of these issues with saline breast implants and their need for eventual replacement, they opt to place them under the chest muscle. The chest muscle works as an extra layer of tissue over the implant, which makes for a smoother transition from the chest wall to the implant. The finished product is a more seamless transition versus a more visible and abrupt change when the implant is not placed below the pectoral muscle. As for gel breast implants, they can also be safely placed below the pretorial muscle if that is a viable option for the patient since replacement and wrinkling is less common with this type of implant.
×